Mohr3D — Interactive Mohr's Circles & Von Mises

Input (MPa)

Normal (σ)

Shear (τ)

Enter a full 3D stress state. The tensor is assumed symmetric with τxy = τyx, τyz = τzy, τzx = τxz.

Mohr's Circles

255075100125-50050Normal stress σ (MPa)Shear stress τ (MPa)σ1σ2σ3sukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.com

Principal Stresses (MPa)

σ1
132.7895
σ2
72.4506
σ3
14.7599

Equivalent Stress

102.2252 MPa

Von Mises: √(((σ1−σ2)² + (σ2−σ3)² + (σ3−σ1)²) / 2)

Max Shear Stress

59.0148 MPa

τmax = |σ1 − σ3| / 2

Per-plane view (Mohr construction with σ, τ labels)

X-plane — circle (σ1, σ2)σ1σ2σx = 120.000 MPaτxy = 25.000 MPasukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comY-plane — circle (σ2, σ3)σ2σ3σy = 80.000 MPaτyz = 10.000 MPasukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comZ-plane — circle (σ1, σ3)σ1σ3σz = 20.000 MPaτzx = -15.000 MPasukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.comsukruerikli.com

Each mini chart projects the given σ to the circle so the point lies on the Mohr circle. Numeric labels show your input (σ, τ).

Notes

  • All units are MPa. Provide six independent components of a 3D symmetric Cauchy stress tensor.
  • Principal stresses are computed via a Jacobi eigensolver (symmetric 3×3).
  • Mohr's circles: (σ1,σ2), (σ2,σ3), and (σ1,σ3). Axes are σ (horizontal) and τ (vertical).
  • Equivalent (von Mises) stress is based on principal stresses.